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SADDLEPOINT APPROXIMATIONS FOR VARIOUS STATISTICS OF DEPENDENT 

NON-GAUSSIAN RANDOM VARIABLES:  APPLICATIONS TO THE MAXIMUM 

VARIATE AND THE RANGE VARIATE 

INTRODUCTION 

Evaluation of the joint cumulative distribution function 

(CDF) or joint exceedance distribution function (EDF) from the 

corresponding joint probability density function (PDF) is a very 

difficult task in M dimensions when M is approximately greater 

than four.  Even in the simplest nontrivial case, namely, when 

the joint PDF is Gaussian with known non-diagonal covariance 

matrix and mean vector, the required integrals over an M- 

dimensional subspace are not amenable to numerical integration. 

However, a number of probabilistic problems are amenable to 

the analytic evaluation of the joint moment generating function 

(MGF) of the M random variables (RVs) of interest, even though 

the corresponding joint PDF is not available in any useful 

analytic form (reference 1).  In these cases, it would be very 

useful to have a means for determining the joint CDF, joint EDF, 

and/or joint moments directly from the M-dimensional joint MGF, 

without having to bother with the intermediate joint PDF.  This 

report presents just such a technique for accomplishing this 

goal by extending Parseval's theorem, relating one-dimensional 

Fourier transforms, to M-dimensional Laplace transforms with 

movable Bromwich contours. 



The additional freedom afforded by moving contours in complex 

M-dimensional space allows for use of an M-dimensional 

saddlepoint (SP) of the integrand relating the joint MGF to the 

statistic(s) of interest.  A saddlepoint approximation (SPA) can 

then be developed about this special point for the desired 

statistical quantity of interest.  Although this procedure 

requires the numerical determination of an M-dimensional SP, it 

affords a reasonable practical means for approximately evaluating 

some joint probabilities and joint moments that have been 

previously inaccessible.  An excellent review of the SP method is 

given in reference 2, in addition to a thorough bibliography. 

The calculation of these M-dimensional statistics is not 

bought cheaply.  It is sometimes required that multiple 

M-dimensional SPs be determined to evaluate an EDF or PDF at a 

single point in probability space.  Also, the storage 

requirements and/or execution times can rapidly grow unmanageable 

as the number of dimensions, M, increases.  Finally, care must be 

taken to ensure that the appropriate SP is Located in the correct 

region of M-dimensional space; this allowed region of analyticity 

varies with the particular statistic under investigation. 



PROBABILITY NOTATION 

Random variables will be denoted by boldface type.  Thus, 

real random vector (RV) z is an Mxl column vector 

z = [z1 ••• zM]' , (1) 

with random components {*„} r  m=l:M, that may be statistically 

dependent on each other.  On the other hand, z = [z^ ••• zMl' is 

an Mxl vector of ordinary real variables {zm}«  The joint PDF of 

RV z at argument z is denoted as 

Pz
(z) = PZ

<Z1,,,,#ZM) * (2) 

The corresponding joint CDF of RV z at argument z is 

Zl ZM 

cz(z) = cz(Zl zM) = J dux ... J duM pz(Ul,...,uM) - 

= Pr(z1 < z1#...,8H < zM) , (3) 

where Pr(e) is the probability of event e.  The corresponding 

joint EDF of RV z at argument z is 

00 00 

ez(z) = ez(Zl,...,zM) = J dU;L -.. J duM pz(Ul,...,uM) = 

zl       ZM 

= Pr(z1 > z1,...,zM > zM) . (4) 

It should be noted that c (z)+e(z) <1, generally, in M z      z 

dimensions for M > 1. 



MIXED PROBABILITY FUNCTIONS 

It will be necessary later to introduce and utilize some 

mixed probability functions.  For example, the following quantity 

is M-l parts CDF and 1 part EDF: 

Pr(8l < Zl  2M-1 < ZM-1' ZM > V = 

21       2M-1 

" J dUl '•• J dUM-l J dUM PZ
(U1 V ' <5> 

— 00 — 00 5> 

M 

On the other hand, the following quantity is 1 part PDF and M-l 

parts CDF: 

Z2        ZM 

\  du2 '•• \  duM PZ
(Z1'U2 U

M
} ' (6) 

Finally, although the following quantity is not encountered in 

this report, it is listed to demonstrate the great generality of 

the probability procedure to be presented here, namely, 

z! •    z?   z9 

I  dul J du4 J du5 J du7 J du9 PZ
(U1'Z2'Z3'U4'U5'Z6'U7'Z8'U9'Z10) 

— so     —oo 

(7) 
Z4    z5 

is five parts PDF, three parts CDF, and two parts EDF.  It should 

be observed that all of the probabilistic quantities"here are 

special cases of the M-dimensional integral 

J dU;L ••• J duM P2(u1,...,uM) g(ulf...fuM) = J du pz(u) g(u). (8 ) 



TRANSFORM DOMAIN 

The transform domain is denoted in terms of Mxl complex 

vector \ =  [\±   '"   X^]'.     In particular, the joint MGF //Z(X) 

corresponding to joint PDF p (z) is given by expectation z 

/j   (X) = E exp(X' z) = E exp 
z 

r Mn 
m "m C K '- 

(9) 

,m=l 

= J dzx ••• J dzM pz(z1/...,zM) exp(X' z) . 

When the imaginary part, X^ of vector X is zero, integral (9) 

exists for Re(X) e R , where M-dimensional real region R always 

includes the origin X = 0.  It immediately follows from the form 

of equation (9) that joint MGF yuz(X) will exist for all values of 

vector X. when Re(X) e R .  This M-dimensional X region of 

definition of joint MGF /uz(X) is called the region of 

analyticity, ROA(// ); that is, ROAU ) is the M-dimensional set z z 

of complex X values such that Re(X) s R . 

The joint PDF p (z) at vector argument z may be obtained from z 

the joint MGF // (X) by means of M-dimensional inverse Laplace z 

transform 

pz(z) = —-—s J d\±   ••• J dXM //z(X1,...,XM) exp(-X'z) , (10) 
\ 1 z n j     _        — 

^1        ^M 

where Bromwich contours {C„}, m=l:M, initially lie in the m 

ROA(// ).  The m-th Bromwich contour Cm parallels the imaginary 



axis Xmi and remains in the ROA(yuz).  However, the freedom to 

move all the contours {Cm} within the ROA allows for an 

advantageous choice of locations, namely, through the 

M-dimensional real SP of the integrand of equation (10) that lies 

in ROA(//z); see reference 1 for an example. 

The corresponding joint cumulant generating function (CGF) of 

RV z is given by 

XZ(X) = In n  (X)  for X e ROA(/y ) . (11) 



REAL NONLINEAR TRANSFORMATIONS 

Suppose random vector z is subjected to the real.nonlinear 

transformation g(u) = g(ulf...,uH) according to 

y = g(zlf.. "ZM) ' 
(12) 

leading to real scalar RV y.  Two examples are 

* - ktt+ ••• + z^J   and   y = maxlzj,—,zM) . (13) 

The average value of RV y in equation (12) is given by 

a = E(y) = E g(z1,...,zM) = 

" J dUl * ** J 
duM Pz(ul'""UM) 9(u1,...,uM) . (14) 

This is the same M-dimensional integral encountered in equat ions 

(5) through (8) However, M-dimensional integral (14) is 

virl tually always too difficult to determine analytically; al so, 

for large M, it . is extremely difficult to evaluate numerically 

due to storage and execution time limitations.  Accordingly, an 

alternative, more useful form for integral (14) will be developed 

Substitute expression (10) for joint PDF pz into equation 

(14) and interchange the M-dimensional integrals to obtain 

1 
a "      M (i2n)n 

J dXx ••• J d\M //z(X1,...,XM) x 
Cl       CM 

x J dux ••• J duM g(ulf...ruH) exp(-X'u) . (15) 

7 



The outer integrals in equation (15) require that X be kept in 

the ROA of vz(\).     At the same time, the inner integrals on u in 

equation (15), to be denoted by gamma function y(X), will 

converge only for vector X within a restricted region of 

M-dimensional space.  That is, gamma function 

r(\lf ...,XM) = J d^ ••• J duM g(u1,...,uM) exp(-X'u)    (16) 

exists only for X e ROA(Y).  Use of relation (16) in equation 

(15) yields the alternative expression of interest for average a: 

a = ;rb^ I dXi ■" I dXM "z(Xi v Y(XI v • (i7) 
c
i     Si 

In more compact notation, from equations (14) and (17), 

a = [ du p (u) g(u) =  1   f dX */ (X) T(X) , (18) 
J (i2n)M J    z 

where M-dimensional contour C must lie in the intersection of the 

ROAs of fJ_(\)   and y(X); that is, C s ROA(// ,Y) =  ROA(// ) n ROA(Y). *• z z 

The relation (18) is exact; there are no approximations 

involved in this identity.  However, the M-dimensional integral 

on X will generally not be capable of evaluation analytically 

either; but the fact that the M-dimensional contour C in equation 

(18) can be moved about in the restricted ROA(/t/ ,Y) affords the z 

chance of developing an SPA for the last term in equation (18) 

about a SP in this region. 

8 



PROS AND CONS OF EQUATION (18) 

The first integral in equation (18), I-, has an immediate 

physical interpretation as the average of nonlinear transforma- 

tion g, whereas the second integral in equation (18), ^f has no 

direct physical interpretation. Also, it is easy to directly 

specify nonlinearity g in I., whereas gamma function Y in I2 must 

be obtained via the M-dimensional Laplace transformation (16). 

On the other hand, many probabilistic problems have no 

convenient expression for the joint PDF p , whereas the joint MGF 

/j    can sometimes be obtained in closed form; see reference 1, for z 
example, where the joint MGF for M quadratic and linear forms in 

K dependent Gaussian RVs is derived.  Also, whereas development 

of an SPA for I. in equation (18) is difficult due to the 

discontinuities inherent in typical g functions, the SPA for I2 

in equation (18) can be developed more easily by moving 

M-dimensional contour C to an appropriate SP in X space. 

The availability of a closed form for joint MGF n   , z 

combined with the lack of knowledge of joint PDF p , weighs very z 

heavily for form I- over I- in equation (18).  The major drawback 

with I- is in getting the M-dimensional Laplace transform y of 

nonlinearity g; however, for an important class of physically 

meaningful problems, the g function is separable in its arguments 

u = [u, ••• u„]', thereby allowing reduction of equation (16) to 

M one-dimensional Laplace transforms, a very workable approach. 



EXAMPLES OF TRANSFORMATION g(u) 

Example 1.  9z(ulf...fuM) = 8(u1-z1) ••• S(uM-zM) , (19) 

where vector z = [zx   ••• z^]'   represents an arbitrary point in 

real M-dimensional space.  Substitution of equation (19) in the 

left-hand side of equation (18) yields 

a = J du p2(u) gz(u) = pz(z1 zR)   , (20) 

which is simply the joint PDF of RV z at argument z.  At the same 

time, substitution of equation (19) into equation (16) yields 

Y (X) = exp(-X'z) = exp 
M 

-TZ 
m=l 

X  z m m for any {Xm} . (21) 

That is, the ROA(Y) is infinite for this particular impulsive g 

example in equation (19); therefore ROA(/t/ ,Y) = ROA(// ).  Use of 
u Z 

equation (21) in equation (18) yields the alternative 

a = ,.\    M f dX tJz{X)   exp(-X'z) , 
(i2n)n i z (22) 

which is the usual expression (10) for the joint PDF p (z). 

Nothing new has been learned from this particular example for 

nonlinearity g.  However, the method developed here will be used 

for all the following examples, without additional explanation. 

A key point is to note the ROA(Y) when equation (16) is evaluated 

for the particular g example under consideration.  This must be 

coupled with ROA(//z) according to ROA(//z,Y) = ROAUz) n ROA(Y). 

10 



Example 2.  gz(u1#... fuM) = U^-i^) '•• U(zM~uM) , (23) 

where unit step function U(x) is 1 for x > 0 and is 0 for x < 0. 

Then, average (14) becomes 

21        ZM 

= J dUl ... J duM pz(Ul,...,uM) = c8(«1 zM) ,      (24) 

which is the joint CDF of RV z at argument z = [z1 ••• z„]f.  The 

gamma function (16), corresponding to nonlinearity (23), is 

Zl        ZM 

Y2(X) = J dux ... J duM exp(-X1 Ul - ..- -XM uM) = 

exp(~Xl 21>     exP(-XM V      , ,, ./«   , , 
 —±  •'•  =X^ exp(-X'zj/rT(-Xm)      (25) 

if Re(Xm) < 0 for m=l:M.  Therefore, average 

a = c (z) = - 
Z     ( 

-^-rr [ dX u   (X)   exp(-X'z)/"n"(-Xm) ,      (26) 
i2n)u i / m=l  m 

provided that the m-th Bromwich contour C  stays to the left of 
m   ■*   

the origin for m=l:M, and also stays within the ROA of joint MGF 

//z(X).  Relation (26) provides a method for obtaining the joint 

CDF cz(z) at arbitrary M-dimensional point z directly from the 

joint MGF /u2(X) without having to calculate or deal with joint 

PDF pz(z). 

11 



Example 3.  gz(u1, . . . ruM) = IKU^ZJ) ••• U(uM~zM) , (27) 

where unit step function U(x) is 1 for x > 0 and is 0 for x < 0. 

Then, average (14) becomes 

00 00 

3 = J dul *" J dUM P2
(U1'"-'UM) = ez(zl"-"ZM) '      (28) 

Zl        ZM 

which is the joint EDF of RV z at argument z -   [z- ••• z   ]'.     The 

gamma function (16) corresponding to nonlinearity (27) is 

00 00 

YZ(X) = J dux ••• J duM exp(-X1 ux - .-. -XM uM) = 

zl       ZM 

exp(-Xl 21}     eXP(-XM V      , ,, 7»  . , 
 T  '••  x" exp(-X'z)/rT(Xm)       (29) 

1 M / m=l 

if Re(Xm) > 0 for m=l:M.  Therefore, average 

' M 
dX //2(X) exp(-X'z)/] a - ez(z) - TTT-Ti J dX "2<

x> exp(-X'z)/rT(Xm) , 
(i2n)  £ / m=l 

(30) 

provided that the m-th Bromwich contour C  stays to the right of 

the origin for m=l:M, and also stays within the ROA of joint MGF 

ywz(X).  Relation (30) provides a method for obtaining the joint 

EDF ez(z) at arbitrary M-dimensional point z directly from the 

joint MGF //2(X) without having to calculate or deal with joint 

PDF pz(z). 

12 



Example 4.  gz(u1,...,uM) = «(iij-Zj) U(z2~u2) ••• U(zM~uM) . (31) 

Average (14) is given by 

z.       zM 2 M 

a = J du2 ••• J duM pz(z1#u2,...,uM) (32) 

— 00 

which is 1 part PDF and M-l parts CDF.  M-dimensional field point 

z = [z. ••• z ]' is arbitrary.  The gamma function (16), 

corresponding to nonlinearity (31), is 

z2       ZM 

YZ(X) = expl-X.^ zx)   J du2 ••• J duM exp(-X2 u2- ••• -XM uM) = 
— 00 —OS 

/M 
- exp(-X'z)/T—f(-X )   if Re(Xm) < 0 for m=2:M .      (33) 

/ m=2 

There is no restriction on X, in this particular gamma function. 

The alternative form for average a in equation (32) is given by 

a ^r r dX « (X) exp(-X'z)/"rT(-\J * <34> 
(i2n)M i Z / m=2 

provided that the m-th Bromwich contour C stays to the left of 

the origin for m=2:M, and also stays within the ROA of joint MGF 

u   (X).  The particular contour C. for m=l can pass either to the 

right or left of the origin in the complex X1 plane but must stay 

within the ROA(// ). z 
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Example 5.  g^u, V = FT^-z^) - U(um-zmb)) ,    (35) 

where zma < zmb for m-l:M.  The difference of unit step functions 

is a unit pulse over interval (zma/Zmb).  Average (14) is now 

Z-i t. JMb 

" J dul   •'•  J duM Pz<ul V  - Pr(zia<Vzlb WVW 
'la Ma 

(36) 

which is recognized as a set of joint interval probabilities. 

Limits {zma} and {zmbJ are arbitrary.  The gamma function (16) 

corresponding to nonlinearity (35) is given by 

M 
YZ(X) = 

m=l 

Jmb 

J du exp(-Xmu) 
z k ma 

_M (exp(-X z  ) -pjj  yv  m ma' 
m=ll 

"P(-V«b> 
m 

■) 

(37) 

for  all   X.     The  use  of equation  (37)   in general   relation   (18) 

yields  the  alternative  average  form 

a = 1        r M r —-ü jdx^x) rj. 
i2n)     " m=l I, 

M   fexp(-X  z)   -  exp(-X  z  . ) 
>-i m ma .    *^     m mb' 

(38) 
m 

where M-dimensional contour C is restricted only by being 

required to remain in the ROA of joint MGF // (X).  These interval z 
probabilities (38) can be determined directly from the joint MGF 

//2(X) of RV z without the need to calculate or deal with the 

joint PDF pz(z) of RV z, as would be required by attempting to 

use equation (36). 
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Example 6.  g(u1,—,uM) = u1 
vrl V -1 

u„    for u > 0 M        m (39) 

and zero elsewhere;  parameters vm > 0 for m=l:M.  Let {zm}/ 

m=l:M, be positive RVs with joint PDF pz and joint MGF fj^.     The 

average (14) is given by 

a " J dUl "• J dUM V 
v,-l 

u V
1 

M Pz(u1,...,uM) , (40) 

which is recognized as the (vffl-l) th-order moments of RV z.  The 

gamma function (16), corresponding to nonlinearity (39), is 

M 
Y(X) = 

m=l 

fa> 

lo 

V -1 
dum u exp(-Xm u) mm m m 

M rr(V- 
(41) 

m=l (. x m 
Am 

if Re(X ) > 0  for m=l:M.  The use of equation (41) in general 

relation (18) yields the alternative form 

m=l        (i2n) "n /    m=l 
(42) 

where C denotes that the M Bromwich contours {C^} must all pass 

to the right of the origin in their respective Xm planes.  There 

is no parameter vector z for this particular probabilistic 

problem (40). 
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Example 7.  g(u1#u2) = 1 for l^+t^l < 1; zero otherwise.    (43) 

This two-dimensional nonlinearity is nonzero only within a unit 

diamond D centered at the origin.  The average (14) is given by 

a = If dul du2 Pz^l'V - Pr<zi'S2 6 D) , (44) 

which is the probability of RV z = [ Z;L z2)'   landing in the unit 

diamond D located at the origin.  The gamma function (16), 

corresponding to nonlinearity (43), is 

r(X) = Jj dux du2 exp(-X1 U;L -X2 u2) - 

= 4 
cosh^) - cosh(X2) 

."2 72  for ill xi'x2 ' (45) 

The use of equation (45) in general relation (18) leads to 

alternative form 

4    r        cosh(X.. ) - cosh(X-) 
"     2   

dX ^z(X)  S 5 — . 
(i2n)2 J     Z Xi - X2 

(46) 

where contour C is restricted only to be in the ROA of joint MGF 

//2(X) 

Notice that nonlinearity g(u1,u2) in equation (43) is not 

separable in the variables u^u^ this is in contrast to the 

earlier six examples, where function g(ulf...fuM) was separable 

in all M variables {um}.  Also, all the g-function examples here 

have been taken to be positive real where they are not zero. 
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SADDLEPOINT APPROXIMATION 

The general M-dimensional integral of interest is given by 

equations (17) and (18) in the form 

a = _1—  [ dX p   (X) Y(X) = ——zz   \  dX exp[A(X)] ,     (47) 
(i2n)M J     Z (i2n)M £ 

where the function A(X) in equation (47) is defined as 

A(X) = ln[// (X) Y(X)] = XJX) + In Y(X) , (48) z " 

and where X„(X) is the joint CGF (11) of RV z. z 

A real SP of the total integrand in equation (47) is located 

where the M partial derivatives (PDs) of exp[A(X)] are all equal 

to zero.  Equivalently, a real SP X is located where the PDs 

3A(X) 

m 
= 0  for m-l:M . (49) 

X 

Saddlepoint equation (49) constitutes M nonlinear simultaneous 

equations in real variables {Xm}, m=l:M.  The location of the 

real SP X depends on both X„(X) and Y(X).  Also, SP X must lie in z 

the intersection ROA(// ,Y) of their two ROAs.  The M-dimensional z 

contour C in equation (47) can be taken to pass through this real 

SP; that is, each Bromwich contour Cm passes through real 

component X of real vector SP X. At this stage, there are no 

approximations involved in expression (47); this is an exact 

result for the average a of interest. 
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DERIVATION OF SADDLEPOINT APPROXIMATION 

Once the real SP X in the ROA(//z,Y) has been located, expand 

the A(X) function in equation (48) about that point according to 

M-dimensional Taylor series 

M 
A(X) = A(X) + y~: 3A(X) 

n,-1        9X
m m=l m 

fxm - K) + 

+ j    C     A~(ra,m)    fx    -  xl fx    -  xl   +   ••• (50) 

where Xm is real and second-order coefficients 

2 
A /« ™\ _ 9 A( X) 
Vm'S> s ax  3X 

m  m 
for m,m=l:M . 

Also, define the MxM Hessian matrix of A(X) at the SP X as 

(51) 

^2 ~   [A2^m,~^ '  m/l=lJM • (52) 

Now, truncate expansion (50) at second order, use equation 

(49), and substitute the result into equation (47) to get the 

approximation 

a0 s  1  M f dX exp[A(X) + \    jf] A_(m,m)fxm - X 1[\    - X11(53 U   (i2n)M J       L      2 mTmil 2  ~^m   mM *   ^J 

At this point, make the change of variable 

\n = \» + i s-  for m=l:M , m   m     m ' (54) 

and define Mxl real vector s = ^ ••• sM]'.  Then, equation (53) 
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yields 

M 
a0 -   ,,.M    ds exPL" 2 n: A2(m,m) sm sj = \zn) ^ m,m=i — 

— GO — 

 exp[A(X) ]  ,,r, 

" (2n)»/2 [detu2>p ' 

where equation (52) has been used.  This result, aQ, in equation 

(55) is denoted as the zeroth-order saddlepoint approximation to 

exact result a.  Observe that aQ must always be positive, since 

MxM Hessian matrix A2 is always positive definite at real SP X if 

g(u) in equation (18) is real and non-negative for all u. 

CORRECTIONS TO SADDLEPOINT APPROXIMATION 

The first-order correction to aQ is given in reference 1, 

pages 15 - 16, as 

a1   m  aQ [1 + cfc] , (56) 

where cfc is a correction term.  Alternatively, the exponential 

version of the saddlepoint correction is (reference 3, page 180) 

ae s  a0 exP(ct} ' <57> 

which has the same first-order term as equation (56).  However, 

it has been found numerically that approximation a generally 

gives more accurate results than either aQ or a.; accordingly, a 

has been used for the majority of the numerical results to be 

presented here. 
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The correction term c. uses the third- and fourth-order 

PDs of the function A(X), defined in equation (48); however, 

these particular PDs only need to be evaluated at the real 

saddlepoint X. 

Expressions were given earlier for the gamma function Y(X) 

corresponding to the joint CDF, EDF, PDF, moments, and interval 

probabilities.  Also, the joint MGF v„(\)   can be found in closed z 

form for a number of statistics, such as the joint Gaussian, 

quadratic and linear forms in dependent Gaussian RVs, and 

linearly transformed independent RVs with arbitrary statistics. 

By combining these results with equations (55) - (57), SPAs can 

now be obtained for a number of M-dimensional probabilistic 

problems that were previously considered unsolvable.  These SPAs 

require that the M-dimensional field point, z, of interest be 

specified and that the real SP X in the ROA(// , y) be obtained. z 

Strictly speaking, closed forms for joint MGF // (X) or joint z 

CGF XZ(X) are not mandatory; however, it must be possible to 

numerically evaluate // (X) or X„(X) at any M-dimensional real z        z 

point X required.  Then, a numerical search for the minimum of 

total integrand /# (X) y{\)   or X„(X) + In y(X) of equations (47) z z 

and (48), where the search can be confined to the real {X } axes,    m 

will locate the real SP X in the ROA.  The Hessian matrix A~ in 

equation (52) will then require second-order differences of A(X) 

be taken in the neighborhood of the SP X.  Numerical evaluation 

of third- and fourth-order PDs may be questionable, however. 
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CUMULATIVE DISTRIBUTION FUNCTION OF THE 
MAXIMUM OF M DEPENDENT RANDOM VARIABLES 

RV z = [ z- ••• z   ]'   has statistically dependent components 

{z ), m=l:M.  The maximum RV of set {z„} is defined as m v m 

y = max(zlf...,zM) , (58) 

which is a random scalar.  The first-order CDF of RV y is 

c (y) = Pr(y < y) = Pr^ < y,.. ., z^  <  y) = cz(y,...,y) = 

' 77^ I dX "*(X) exp(~ y ifi W17<~x»>) ' <59) 
(lzit;  _ m=l  /  m=l 

ul 

where M-dimensional contour C, denotes that the Bromwich contours 

must all pass to the left of their respective origins.  Equation 

(59) is a single M-dimensional integral for the CDF of maximum RV 

y that allows for arbitrary statistical dependencies between RVs 

{zm}, as reflected through the joint MGF /J  (X). 

The A(X) function of equation (48) is given here by 

M       M 
A(X) = x^(X) - y Y2   K ~ T2   ln(-\J • (60) z     ■* *-—i     m •-—i m m=l     m=l 

The first-order PDs of A(X) are 

itxAL = n*^- - y - b  for m=l5M • <6D mm m 

The SP equations are obtained by setting these M PDs to zero and 

numerically solving for M-dimensional SP X.  However, the search 
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for the real SP solution of equation (61) must be conducted only 

in the left half of each real X    axis and within the ROA of joint 

MGF JJ„(\) .  The search procedure must not be allowed to wander 

into any of the right half real X axes; otherwise, the search 

may drift off to infinity or find a spurious real point of the 

analytic continuation of // z 

satisfies the SP equations. 

analytic continuation of u   (X) outside the ROA(// , Y) that also z z 

The second-order PDs of A(X) follow from equation (61) as 

32A(X) a2xz(X)          1 
3X—ax" " äT-äJT + 71 5mm    *>r mfn-lsll   .                                     (62) 

mm m      m A        — — —        m 

The  addition of  the positive  diagonal  terms   U/X2}   (at  the  real 

SP)   to  the  Hessian matrix  of  X„(X)   serves  only  to  improve  the z 

positive definitenes's of the Hessian matrix (62) for A(X). 

Equations (60) through (62) enable calculation of the zeroth- 

order SPA aQ given by equation (55).  The correction term c. in 

equations (56) and (57) also requires the third- and fourth-order 

PDs of A(X) and can be derived from equation (62). 

TWO TEST EXAMPLES 

Two test examples will be used extensively in the following 

developments.  They are 

1.  Joint Gaussian RVs {zmJ, m=l:M, with arbitrary Mxl mean 

vector and MxM covariance matrix, and 
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2.  Linearly transformed exponential RVs (enJ, n=l:N.  In 

particular, RV z = A e, where Nxl RV e is composed of 

independent, identically distributed RVs, each with PDF 

exp(-u) for u > 0.  Arbitrary matrix A is MxN, thereby making 

z an Mxl RV with dependent non-Gaussian components {zm}« 

The following numerical examples all employ M = 4 and N = 7. 

Since there are no analytic results for the statistics of maximum 

variate y defined in equation (58), when components {zm} are 

statistically dependent, three different methods are employed to 

determine the "truth" for comparison with the SPAs that are 

developed here; they are Gauss-Hermite quadrature for the lower 

tail of RV y, simulation using le8 trials for the central region, 

and an asymptotic form for the upper tail of RV y. 

To employ Gauss-Hermite quadrature on the exact M-dimensional 

integral (47), the contour C is first moved to the real SP of 

total integrand exp[A(X)].  Then, an M-dimensional linear 

transformation of variables is utilized that makes the form of 

the new integrand, in the neighborhood of the SP, behave as 

exp [-«•!♦ •••♦•3] < 

where s  is the vertical deviation from the real SP in the m 
complex X plane. Finally, the standard one-dimensional Gauss- 

Hermite relations are replicated in all M dimensions, using the 

weighting factor (63).  The number of samples per dimension is 
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increased until stability in the estimated integral is realized, 

or until storage and execution time problems become untenable. 

It has been found for the current two test cases that this 

Gauss-Hermite procedure is accurate enough only on the lower tail 

of maximum RV y. 

The asymptotic EDF of maximum RV y is given as the sum of the 

first-order EDFs of each of the individual RVs {z } in equation 

(58).  This asymptotic result becomes relatively more accurate as 

the upper tail of RV y is examined.  The combination of the three 

approaches above is sufficient to enable determination of the 

relative accuracies of the SPAs over essentially the full range 

of arguments of the various statistics considered here. 

GRAPHICAL RESULTS 

Figure 1 displays results for the CDF of maximum RV y for the 

Gaussian test example (GTE) cited earlier.  The black curve is 

the simulation result (SIM) using le8 trials, while the x points 

are the SPAs obtained from exponential version a  in equation 

(57).  Equations (59) through (62) were used for these 

computations.  The red curve is the asymptotic result (ASY) for 

the CDF of y; the asymptotic result corroborates the simulation 

in the central region and significantly extends the CDF 

simulation on the upper tail.  On the lower tail, the asymptotic 

result is useless. 
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Figure 2 contains plots (for the GTE) of the ratio of SPA ae 

to the three attempts at "truth", to be called accuracy ratios. 

Gauss-Hermite quadrature is denoted by GHQ, the simulation by 

SIM, and asymptotic by ASY.  The GHQ curve can be trusted for 

threshold argument y less than 1, the SIM curve for y larger than 

0, and the ASY curve for y larger than 6.  The end result is that 

the SPA a varies from +3% to -8% error over the complete range e 

of its argument values.  The notation NG denotes regions where 

the plotted results are no good and cannot be used. 

Figure 3 displays results for the CDF of maximum RV y for the 

exponential test example (ETE) cited earlier.  The superposed 

points labeled with 0 are the SPAs obtained from the zeroth-order 

SPA aQ in equation (55).  Approximation aQ is significantly 

poorer than exponential SPA a ; in fact, aQ becomes larger than 1 

for threshold argument y larger than 7; although SPA aQ must be 

positive, it need not stay below 1.  By Contrast, SPA ae stays 

below 1 for all y for these examples.  An asymptotic result for 

the CDF of RV y was not computed for this ETE. 

Figure 4 contains the accuracy ratios for the ETE.  The 

zeroth-order approximation aQ has error variations from -70% to 

+35%, whereas a  only errs by -20% to +4%.  This example 

illustrates the need to compute the correction term cfc for use in 

equation (57).  Of course, the additional effort required to 

evaluate the third- and fourth-order PDs needed for c. can be 

considerable; see reference 1 for an example. 
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NEED TO RESORT TO EDF OF MAXIMUM VARIATE y 

For scalar RV y, the EDF is simply e (y) = 1 - c (y), from 

which the detection probability Pd and false alarm probability Pf 

of a threshold-comparison processor can be immediately calculated 

according to Pd = 1 - c^yl^) and Pf = 1 - cy(y|H0), where H1 

and HQ are the hypotheses that a signal is present and absent, 

respectively.  If the CDF values c (y) were exact, these 

relations could be used directly.  However, small approximation 

errors in calculating the CDF values c (y) can sometimes result 

in large EDF errors, depending on the exact range under 

consideration. 

For example, if the exact Pd is 0.99, then c (y|H1) = 0.01. 

However, the SPA to this CDF may be 0.01 (1 + e), where e is in 

the range ±0.1.  This result leads to an SPA for P, of value 
a 

1 - 0.01 (1 + e) = 0.99 - 0.01 e = (0.989 to 0.991).  This range 

of variation is probably quite acceptable for P, evaluate Lon, 

On the other hand, suppose the exact Pf is 0.001, meaning 

cy(y|H0) = 0.999.  But, for cy SPA 0.999 (1 + e), the SPA to Pf 

is 1 - 0.999 (1 + e) = 0.001 - 0.999 e = (-0.099 to 0.101).  This 

range is totally unacceptable.  Thus, it is necessary to have a 

method for direct calculation of the EDF ey(y) itself of maximum 

RV y, especially for very small EDF or Pf values. 
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EXCEEDANCE DISTRIBUTION FUNCTION OF THE 
MAXIMUM OF H DEPENDENT RANDOM VARIABLES 

The first-order EDF of maximum variate y in equation (58) is 

not as simple as that given for the CDF in equation (59).  The 

added complexity for the EDF is best illustrated by considering 

the special case of M = 2; that is, y = max(z) = max(z1,z2). 

EXCEEDANCE DISTRIBUTION FUNCTION OF y FOR M = 2 

For M = 2, there follows y = max(z.,z2).  Consider a two- 

dimensional z.,z, plane with horizontal and vertical lines drawn 

at threshold y in both dimensions.  Label the quadrants centered 

at the point (y,y) in the z^Zj plane as Q^, Q2, Q3, and Q4, in 

standard order.  Then, CDF c (y) = Pr(z1 < y, z2 < y) = c2(y,y) 

is the probability of RV pair ZwZ2 
landin9 in quadrant Q3. 

On the other hand, EDF e (y) is the probability of RV pair 

ZwZ- landing in quadrants Q^, Q2, or Q4; call these individual 

quadrant probabilities P,, P2, and P., respectively.  Thus, there 

follows, for the composite probability, 

ey(y) = P1 + P2 + P4 = 

= (P-L + P2) + ^ + P4) - P.,^ = 

= (P1  +  P4) + P2 . (64) 
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The first form in equation (64) adds up positive numbers; 

however, there are three probability terms that have to be 

computed.  The second form in equation (64) (called inclusion and 

exclusion) also requires that three different probabilities be 

calculated; additionally, it requires the subtraction of a 

positive quantity.  Finally, the third form in equation (64) 

requires that only two terms be evaluated, both of which are 

positive.  The third form in equation (64) can be interpreted as 

follows: P1 + P4 = Pr(Zl > y) and P2 = Pr(Zl < y, z2 > y).  The 

P2 term is a mixed probability, namely, 1 part CDF and 1 part 

EOF. 

If the quadrant probabilities {PkJ, k=l:4, are not calculated 

exactly, but perhaps obtained by SPAs, the second form in 

equation (64) will be subject to possible loss of significance 

due to the negative term.  Therefore, this second form is not 

recommended for use when only approximations to the individual 

probabilities are available.  Also, forms 1 and 2 in equation 

(64) require three probability evaluations, whereas form 3 

requires only two probability evaluations; this will become 

significant in M dimensions for M > 2. 
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EXCEEDANCE DISTRIBUTION FUNCTION OF y FOR M > 2 

For general M, the maximum variate is given by equation (58) 

as y = max(z-,...,z„).  The EDF of RV y can be written as an 

obvious generalization of the third form of equation (64): 

ey(y) = Pr(y > y) = Pr^ > y) + Pr(z1 < y, z2 > y) + 

+ Pr(z1 < y, z2 < y, z3 > y) + ••• 

+ Pr(z1 < y,..., zM_1 < y, zM > y) . (65) 

Equation (65) contains M terms, all of which are positive; there 

are no cancellations involved in this form.  Whereas the number 

of terms in form (65) increases only linearly with dimensionality 

M, by contrast the corresponding generalizations of forms 1 and 2 

in equation (64) would involve 2  - 1 terms.  Thus, the effort 

here will employ form (65) for all future calculations. 

By reference to equations (5), (8), and (30), the EDF in 

equation (65) can be written as the sum of a number of contour 

integrals: 

e   (y)   = -ri-   f d\, y J i2n J        1 
//1(X1)   exp(-y\1) 

+ -S J dXl I (i2nr i i 
dX, 

JJ0 ( X- , X- )   exp (-yX.. -yX- ) '2V"1"V2 
(-x1)(x2) +   • (66) 

dX. ^M ^1' ' ' ' ' \i ^ + Tihr» JdXi-" idVi IaA» <-v;<-w<vexp 
L

i <-i Lt 

M 
-yC \ 

m=l m 
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where  auxiliary MGFs  are defined at  stage n as 

/un(Xlf . . . ,Xn)   = /u2(X1, . . . ,Xn,0,0, . . . ,0)     for  n=l:M   . (67) 

Stage variable n varies from 1 to M.  There immediately follows, 

from equation (67), the analogous auxiliary CGFs: 

Xn(Xl'* * *'XnJ = Xz(Xlf...,Xn,0,0,...,0)  for n-l:M .     (68) 

The result in equation (66) is exact.  In order to calculate 

the EDF e (y) via this equation, it is necessary to conduct one 

one-dimensional integral plus one two-dimensional integral plus 

... plus one M-diraensional integral.  To achieve the SPAs, this 

will entail determination of a one-dimensional real SP plus a 

two-dimensional real SP plus ... plus an M-dimensional real SP. 

Alternatively, the first few integrals in equation (66) could be 

conducted rather accurately via FFTs, if desired. 

Since all the probabilities in equation (66) are positive, 

the corresponding SPAs are also positive.  When a number of 

positive approximations are added, the general effect is to 

average the errors of each, and to realize some improvement of 

the accuracy. An exception occurs when one of the approximations 

has a very large error, in which case it may dominate the overall 

error of the sum.  The least accurate SPAs to the individual 

terms in equation (66) are not known.  The approach utilized here 

was to evaluate the SPAs for all the terms in equation (66) and 

add them; no FFTs were employed. 
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At the n-th stage of equation (66), the A(X) function of 

equation (48) takes the form 

Vxi V = Vxi V - y C xm - £ ln<"V - ln<V • m=l     m=l 

(69) 

The PDs are given by 

3VX1 V        9Xn(Xl V 1       . 
 ax ax y " x-   for m=1:n •        (70) 

m mm 

Therefore, the nxl SP vector X(n) = tx|n)--- X^n)]' at the n-th 

stage is the solution of the n simultaneous nonlinear equations 

»X_ ( X. , . . . , X ) 

3X
m m 

- y - ~, . = 0  for m=l:n . (71) 

A m 

Since the last contour in each integral in equation (66) must 

pass to the right of the origin in the complex X plane, the n-th 

solution component, X*   in equation (71), must be positive real. 

Conversely, all the other n-1 components of the SP vector X*n' 

must be negative real. 

In order to effect the calculation of equation (66) for the 

total EDF e (y), it is necessary to solve equation (71) 

repeatedly, as stage number n varies from 1 to M.  Thus, the 

dimensionality of the SP search varies from n -  1 dimension to 

n = M dimensions.  Then, all M SPAs to all the terms in equation 

(66) are added to yield the final approximation to the EDF e (y). 
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GRAPHICAL RESULTS 

Figure 5 displays the EDF e (y) of maximum RV y for the GTE, 

as determined from equation (66).  The curves have the same 

identifications as the CDF curves did earlier.  The results for 

the asymptotic behavior and the SPA a overlie each other well 

into the upper tail, while the simulation estimates eventually 

become unstable due to an insufficient number of trials (le8). 

Figure 6 gives the corresponding accuracy ratios for this 

GTE.  The SPA is off by -3% on the lower tail; this error 

increases to +1% for threshold y near 1; then, the error drifts 

down to almost -3% before turning up for large y arguments. 

There is an imprecise transition region for y in the range (8,13) 

where the simulation results are gradually replaced by the 

asymptotic results.  The NG regions indicate where the curves 

should definitely be ignored.  Again, Gauss-Hermite quadrature, 

simulation, and asymptotic behavior were employed to cover the 

entire range of argument values.  The small errors for this GTE, 

namely +3%, are very encouraging; this may be partially due to 

the averaging effects of the individual SPAs mentioned above. 

Figure 7 displays the EDF results for the ETE.  The SPA a 
e 

and the asymptotic results overlie each other well into the upper 

tail.  The accuracy ratios in figure 8 vary from -8% near y = 0, 

to +6% for y near 3.  The simulation results in figures 7 and 8 

for larger y, that is, the upper tail, cannot be trusted, due to 

instability.  No asymptotic results were obtained for this ETE. 
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PROBABILITY DENSITY FUNCTION OF THE 
MAXIMUM OF M DEPENDENT RANDOM VARIABLES 

The interest in this section is on the first-order PDF of the 

maximum variate y = max(z-,...,zM).  One obvious possibility is 

to take the derivative of the first-order CDF c (y) in equation 

(59) with respect to y.  The result is 

M x     M / M 
py(y) = 7w IdX "*<x' exp(~y Pi XJ H("*»/IT"*1 

•* (i2n)     „ m=l m=i /    m=i 
 -V' (72) 

(i2n)" r 
Ll 

where the contours C, must pass to the left of the origins in 

each complex X plane. 

Direct use of equation (72) yielded a rather poor SPA to the 

PDF of y.  This is believed to be due to the factor involving the 

sum of (-X ) terms in the numerator of the integrand of equation 

(72).  The joint MGF /u_(X), defined in equation (9), can be seen z 

to decay in magnitude as X deviates from the M-dimensional real 

SP X on a Bromwich contour; the SP is located on the real axes of 

the complex planes {XI, essentially because PDF p is a positive 
III . z 

real function where it is nonzero. Likewise, the product in the 

denominator of equation (72) increases in magnitude as X deviates 

from the real SP. Meanwhile, the exp factor in equation (72) 

maintains constant magnitude as X deviates from the real SP along 

a Bromwich contour. The effect of the combination of these three 

factors alone would be to cause the magnitude of the integrand of 

equation (72) to decrease as X deviates from the real SP; this is 

a favorable situation in which to develop an SPA. 
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However, the sum of the (-Xm) terms in the numerator of 

equation (72) increases as X deviates from the real SP along a 

Bromwich contour.  This increase in magnitude counters the 

desired decay of the total integrand in equation (72), which is 

required in order to achieve a reasonably accurate SPA.  A 

numerical example employing equation (72) will be displayed 

shortly. 

An approach that eliminates the troublesome summation factor 

from the numerator of equation (72) is to cancel each of the M 

terms, -Xm, with the corresponding term in the denominator 

product.  The net result can then be written as 

c m^n 

where all the integrals at the n-th stage are M-dimensional. 

Also, the M-dimensional contour C(n) changes with stage number n. 

Component contours Cm
n) pass to the left of the origin for m-l:M, 

m^n, while contour Cn
n) is arbitrary.  of course, C(n) must also 

stay within the ROA(fj)   for each n=l:M. z 

The major difficulty with equation (73) is that it requires M 

M-dimensional integrals, whereas equation (72) only required one 

M-dimensional integral.  Thus, it will be necessary to locate M 

M-dimensional real SPs for equation (73). Also, the question 

arises as to whether all the terms in equation (73) are positive. 
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DIRECT PROBABILITY DENSITY FUNCTION DETERMINATION 

A direct determination of the PDF of maximum RV y, which is 

guaranteed to have all positive terms, will now be derived. 

Consider threshold value y and an infinitesimal increment dy 

located at y.  Then, if p (y) is the PDF of maximum RV y, the 

quantity p (y) dy can be interpreted as the probability that the 

largest RV y lies in the interval (y,y+dy).  But, there are M 

ways that this event can occur: RV zm could lie in this interval 

while all M-l of the other RVs {zmJ lie below threshold y.  Since 

m can vary from 1 to M, it is necessary to sum over the 

probabilities of each event, getting total 

Py(y) dy - Pr(y < y < y+dy) = 

= Pr(y < z±   <  y+dy, z2 < y,..., zM < y) + ••• 

+ PrfZj < y,..., zM-;L < y, y < zM < y+dy) .    (74) 

All M terms in equation (74) are certainly positive, being 

probabilities.  The probabilities of events involving more than 
2 

one hit in the interval of width dy are of order dy or higher, 

and are therefore negligible. 

To illustrate the transformation of equation (74) into the X 

domain, consider the first term and define nonlinear function 

g1(u1,...,uM) = [U(U;L-y) - UU^y-dy)] U(y-u2) ••• U(y-uM) . (75) 

Then, the average 
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y+dy  y        y 

al = J du PZ
(U) 9i(u) = J dul J du2 "• J duM Pz

(ul""V  (76) 
y     —oo —so 

is immediately recognized as the first term on the right-hand 

side of equation (74).  The gamma function corresponding to 

nonlinear function g1 in equation (75) is 

y+dy  y        y 

r1(\)   - J du1  J du2 ••• J duM exp(-X'u) = 
y     —oo _oo 

- dy «p(yE(-v)/rT<-V <77> m= i    y    m= z 

if Re*Xm* < ° for m==2:M-  Substitution of equation (77) into 

equation (18) yields the alternative 

a> - 7^j*x "*<x> exp(y 5(-x»,/n(-x") - 
provided that contour C^1) passes to the left for m=2:M, while 

contour C1   is arbitrary, but within the R0A(yu ). 

Continuing this procedure for the remaining terms in equation 

(74) leads to the result py(y) dy = a^^ + ••• + aM, at which point 

the cancellation of common factor dy leads precisely to equation 

(73).  Thus, it can be concluded that all M integrals in equation 

(73) will yield positive values and, therefore, positive SPAs. 

Equation (73) will require a solution for M M-dimensional real 

SPs and an evaluation of M M-dimensional integrals for the SPAs. 
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SADDLEPOINT EQUATIONS 

At the n-th stage, n=l:M, the A(X) function of equation (48) 

takes the form, from equation (73), 

An(X) = XZ(X) - y C Xm - C ln(-Xm) . (79) 
m=l     m=l 

m^n 

The  PDs  are  then 

3A (X)       axjx) . , 

-fx- - ~k- - y - b + r- 5mn  for m=lsM * <80> m       m        m   n 

leading to the SP equations at the n-th stage, 

3XZ(X) 

m 
- y - ^f—r + ^J-T- &      = 0  for m=l:M .      (81) 

r<n)     xfn)  xln) mn 
A m     n 

The M-dimensional real SP vector X(n' must have X*n) < 0 for m 

m=l:M, m^n; however, component X^  is arbitrary, but within the 

ROA(/>z).  Also, the solution of equation (81) must be conducted 

repeatedly for stage number n=l:M.  Thus, M M-dimensional SPs 

must be computed and M M-dimensional SPAs obtained; when added 

together, they will constitute the total SPA to the PDF of 

maximum RV y. 
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GRAPHICAL RESULTS 

Figure 9 presents the simulation and SPA results for the PDF 

of maximum RV y for the GTE, in addition to the asymptotic 

behavior.  Whereas the simulation results become unstable for 

threshold y greater than 10, the SPA ae and asymptotic curves 

continue to track each other well down on the upper tail.  On the 

lower tail, the SPA tracks the rapid drop-off of the PDF while 

the simulation becomes untrustworthy. 

Figure 10 is a repeat of figure 9 except that the scales have 

been changed and the SPA of the single integral approach in 

equation (72) has been added, as labeled with symbol 0. Although 

this latter SPA is excellent on the lower tail, it deviates 

significantly on the upper tail, yielding useless results in that 

region. A possible reason for this behavior was discussed in the 

sequel to equation (72). 

Figure 11 gives the accuracy ratios for this GTE.  By piecing 

together the GHQ, SIM, and ASY results, it is estimated that the 

SPA for the PDF of RV y is about ±5% in error over the complete 

range of threshold y.  There is an additional curve labeled 

ae/dPDF, which is an attempt at approximating the PDF by using 

local differences of the corresponding CDF.  Although adequate on 

the lower tail, the dPDF approximation quickly becomes unusable 

for moderate y values; the explanation for this degradation will 

be presented shortly. 
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Figure 12 displays the PDF results for the ETE.  Again, the 

SPA ag has no trouble tracking the PDF on both tails as well as 

the central region.  The simulation results utilized a bin width 

of 0.1, thereby realizing relatively few hits per bin on the 

upper tail, at least for the le8 trials used.  The SPA a can be e 

seen tracking right through the middle of a smoothed version of 

the simulation PDF estimate. 

Figure 13 contains the accuracy ratios for this ETE.  On the 

lower tail, the SPA is in error by -30%, while in the central 

region, the relative error is about +5%.  The simulation 

estimates on the upper tail cannot be trusted; no asymptotic 

results were derived for this example. 

DANGER OF USING DIFFERENCES OF CDF SPA VALUES 

Due to the large amount of effort required to evaluate the 

PDF Py(y) of RV y by means of equation (73), an attempt was made 

to estimate the PDF by taking local differences of the CDF c (y) 

in equation (59); the latter formula only requires one 

M-dimensional integral instead of M M-dimensional integrals.  To 

ascertain the limitations of this approach, consider the PDF 

approximation at argument x obtained by the ratio 

c(x + A) - c(x -A)     . . 
 2A   H Pa

(x) * <82> 
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If CDF c is exact, the error in approximation (82) is of the 
2 ? 

order of A ; that is, Pa(x) = p(x) + 0(A), where p(x) is the 

exact value of the PDF at x. 

However, if the CDF values are themselves approximations, the 

estimated PDF takes the form 

(1 + e^ c(x + A) - (1 + e2) c(x - A) 

 2Ä  s Pb(x) ' (83) 

This can be expanded as 

pb(x) = pa(x) +  2Ä— c(x) + ~^~2— p(x) + °<cA) •    <84> 

Several possibilities exist.  If e, = e- = 0, then 

Pb(x) = Pa(x) given in equation (82).  On the other hand, if 

e1 = e2 = e ft  0, then 

PbU) - Pa<
x> + e p(x) £ p(x) (1 + e) , (85) 

which is acceptable.  However, if e1 ^ e2 ft  0, and CDF value c(x) 

is not small, then the term (e1 - c2) c(x)/(2A) in equation (84) 

can be large relative to p(x); observe the division by the small 

quantity A.  in fact, on the upper tail of an RV, the CDF c(x) is 

approaching 1 while the PDF p(x) is approaching zero, making the 

situation progressively worse.  Thus, the use of equation (83) 

for approximating the PDF will certainly develop problems on the 

upper tail, and may develop problems earlier.  Figure 11 is an 

illustration of this effect. 
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Figure 9.  PDF of Maximum RV for GTE 
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Figure 11.  Accuracy Ratios for PDF of Maximum RV for GTE 
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STATISTICS OF THE RANGE VARIATE 

Suppose RV x = [x. ••• x-j]' is a set of N dependent RVs with 

joint MGF (j   (a,, »ÖL,).  The range variate for this set of N RVs 

is defined as 

y = max(x-,...,xN) - min(x-,...,xN) . (86) 

The first-order CDF, EDF, and PDF of random scalar y are of 

interest. 

MATHEMATICAL MANIPULATIONS 

In order to illustrate the procedure to be employed, a 

numerical example is used; namely, N is taken as 4, in which 

case equation (86) becomes 

y = maxfx.,...,x.) - minfx-,...,x,) . (87) 

Equation (87) can be manipulated into a familiar form by defining 

the M = 12 (= N(N-l)) difference variables 

zl = xl " x2 '   z4 = x2 ~ xl '   z7 = x3 " Xl '   Z10= x4 " xl ' 

z2 = xl " x3 '   z5 = X2 " X3 '   Z8 = X3 " X2 '   Zll= x4 ~ X2 ' 

z3 = xl " X4 '   Z6 = X2 " x4 '   z9 = X3 ~ X4 '   Z12= X4 " x3 ' 

(88) 

There follows, from equations (87) and (88), 

y = max(z-,...,zM) ,  M = 12 , (89) 
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while linear transformation (88) can be expressed as 

z = A x . (90) 

Matrix A is 12x4 (MxN) and has rank(A) - 3 (N-l).  This can 

be deduced from equation (88) by noting that only three of the 12 

RVs {zm} can be independently specified; the remainder follow as 

simple differences.  (The remaining unlisted four differences 

that are possible in equation (87) are all zero and can never be 

the range variate.)  Therefore, the joint PDF of RV z would 

involve a conditional component with 9 ((N-l)2) delta functions. 

Nevertheless, SPAs can still be developed for the statistics of 

the range variate y, as given by equations (89) and (90). 

Form (89) was encountered earlier in equation (58).  The CDF 

of this form of RV y was given in equation (59), along with the 

A(X) function and its low-order PDs in equations (60) through 

(62).  For easy reference, this last equation is repeated here: 

a2A(X)   l!Vi>   i .   , 
9Xm 3*m  *\^V  7 S"2  f°r m'a_l!M • (91) 

—        —   m 

Although the MxM matrix of second-order PDs of x (X) has rank 
z 

3 (N-l), with three positive eigenvalues, the matrix of second- 

order PDs of A(X) has the full rank 12 (M) due to the {1/X2} 
m 

diagonal terms, and the Hessian matrix A- is positive definite. 

Thus, the determinant encountered in SPA aQ in equation (55) is 

positive, and the SPA is well behaved. 
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The joint MGF */_(X) z required for equation (91) can be 

obtained upon use of equation (90), according to expectation 

/j_(X) = E exp(z'X) = z = E exp(x'A'X) = A/X(A'X) . (92) 

The corresponding joint CGF is XJX) - XJA'X).  The vector 
25           X 

X is 

Mxl while vector A'X is Nxl, which is the dimensionality of input 

RV x in equation (86). 

A major drawback with form (89) for the range variate y is 

that . the original set of N RVs in equation (86) has blossomed to 

the larger number of RVs, M = N(N-l).  Therefore, the SP 

equations (61) now number M instead of N, making this a very 

difficult numerical problem for large M.  For example, if N = 10, 

then M = 90, which means that a search in 90-dimensional X-space 

is required.  An attempt at reducing the number of RVs below the 

number M = N(N-l) required by formulation (88) was attempted by 

taking absolute values of the differences.  Although this reduced 

the number of RVs {zm} to N(N-l)/2, the resulting SPA to the CDF 

of RV y was poorer than the approach using equation (88); the 

reason for the degradation was not explored. 

The form (89) for range variate y was also encountered in the 

considerations for the first-order EDF and PDF of the maximum 

variate; therefore, all the earlier results for SP equations and 

PDs of the EDF and PDF can be brought to bear directly on the 

range variate, with due consideration again given to the 

limitations imposed by a large value of M = N(N-l). 
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GRAPHICAL RESULTS 

Figure 14 displays results for the CDF of range variate y in 

equation (89) for the GTE.  The SPA aQ  tracks the lower tail well 

below the capability of the simulation (le8 trials), but 

underestimates the true CDF values in the central region and 

upper tail.  The EDF SPA ag in figure 15 is more accurate over 

its entire range, except at the lower tail.  Finally, the PDF SPA 

a
e 

in figure 16 gives an accurate representation of both tails, 

but is a slight underestimate in the central region. 

The corresponding results for the ETE are given in figures 17 

through 19.  The accuracies of the CDF, EDF, and PDF appear to be 

slightly better than those for the GTE above.  Despite the sharp 

drop-off of the PDF in figure 19 at the lower limit, the SPA 

continues to track the decay; the near-origin threshold value is 

y - 0.001, for which loglO(PDF) = -7.5. 
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THREE ADDITIONAL PROBABILISTIC PROBLEMS 

The following three problems illustrate some additional 

capabilities of the approach using the joint MGF in the transform 

domain.  Outlines of the solutions are given, but no numerical 

results have been evaluated. 

JOINT CDF OF THE TWO LARGEST RANDOM VARIABLES 

Random vector z = [ z1 ••• z„]' is observed; these RVs are 

statistically dependent with joint MGF /J   (\).     This data vector z z 

is ordered into set y = [y- ••• yMl' where 

yM < yM_i < ••• < y2 < Yi • <") 

The joint CDF of the two largest RVs, y1 and y2, is of interest; 

that is, probability 

Prj[y1 < ylf y2 < y2)  with  thresholds y2 < y1 (94) 

is desired for arbitrary joint MGF JJ   (X). z 

There are two ways event (94) can occur.  In the first, all 

the RVs {zmJ can be less than threshold y2.  This is given by 

Pr(yi < y2, y2 < y2) = c^y^y^ . . . ,y2) , (95) 

which is simply the joint CDF of RV z at common argument y-. 

The second way event (94) occurs is when the m-th RV z lies in m 
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the interval (y2»y1) while all the other RVs {z } lie below 

threshold y-•  Since RV number m can vary from 1 to M, the total 

probability of this event is given by sum 

M 
Pr(y2 < yx < yir y2 < y2) - C Pr(Y2 < z

m <  ?i''   zn 
< Y2' n * m)' 

m=l 
(96) 

Reference to equation (18) reveals that nonlinear function g(u) 

should be selected as the form 

*(ul V - C KUm " y2) " U(um " *l)] "TT u(y2 - uj . (97) 
m=i n=i 

n^m 

The corresponding gamma function is then 

T.X, X.) - £ ""-V»» - ""-Vl' fj  f«*:V2>|. (M) 
m=l m n=l I     n  J 

n^m 

For a given value of m in the outer sum, X is unrestricted but m 
the parameters {XnJ in the inner product must satisfy Re(X ) < 0 

for all n ?  m.  Of course, all {XmJ must always remain within the 

ROA(//_) of the joint MGF // (X).  Expression (98) can now be used 
Zu z 

in equation (18) to evaluate probability (96). 

To get the CDF for the special case of the second-largest RV 

y2, simply let threshold y1 = +» above.  Then, c  (y2) is the 

probability Pr(y2 < y2).  It can be appreciated that the 

probability of obtaining the second-order CDF of the third- 

largest and seventh-largest RVs of set z would be extremely 

formidable due to the excessive number of cases to evaluate. 
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OR-ING AND POST-AVERAGING 

The or-ing operation consists of taking the maximum of a set 

of RVs and comparing with a threshold for purposes of deciding on 

signal presence or absence.  However, for low signal-to-noise 

ratios, it is frequently desirable to perform further averaging 

prior to the threshold comparison.  This leads to consideration 

of the random quantity 

y = a max(alf ,aA) + ß max(b1,...,bß) + y  max(clf ,cc) + ••• 
(99) 

where the RVs a, b, c,... could be statistically dependent on 

each other.  Expression (99) can be modified into the form 

y = max(zir...,zM) , (100) 

where M = A B C ...  The reason for this product is because any 

element of the RV a must be allowed to interact with any element 

of the RV b, etc., in equation (99).  The RV z in equation (100) 

is simply a linear transformation of the RVs a, b, c,...  and its 

joint MGF can be determined from the joint MGF of RVs a,b,c,...; 

however, a note of caution is in order here: dimension size 

M = A B C ... can get very large very quickly, being the product 

of the sizes of the RVs in equation (99). 

The minimum of a set of RVs can be easily translated to more 

familiar terms by using the relation 

minfv-,—,v ) = - max(-v1,—'~v^   • (101) 
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RATIO OF DEPENDENT RANDON VARIABLES 

Let RVz= [z1 z2]' have joint MGF ^(a-^c^) with ROA(// ). 

The statistics of the ratio of RVs, namely, 

w = zl/z2 ' (102) 

are of interest.  In this subsection, RV z2 is presumed to be 

positive; the general case of arbitrary z2 values is treated in 

the appendix. 

The first-order CDF of RV w is given by 

cw(w) = Pr(z1/z2 < w) = Pr(z1 < w z2) = Pr^ - w z2 < 0) . (103) 

Define auxiliary RV v = z., - w z2.  Then, 

cw(w) = Pr(v < 0) = cv(0) = j^ J dX //v(X)/(-X) ,       (104) 

Cl 

which is a one-dimensional contour integral passing to the left 

of the origin in the complex X-plane. The required first-order 

MGF of RV v is 

A/V(X) = E exp(X v) - E exp(X z±   - X w z2) - //Z(X, -wX) , (105) 

where (X, -wX) e ROA(/t/z).  Substitution in equation (104) yields 

the first-order CDF of ratio w in the form 

Cw(w) = liw J dX "z(X' -wX)/(-X) . (106) 
Cl 
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The corresponding first-order EDF of ratio w can be found in 

a similar manner: 

ew(w) = j|^ J dX uz{\,   -wX)/X , (107) 

Cr 

from which there follows the first-order PDF 

pw(w) = un \ dX fJl2){X'  _wX) ' (108) 

c 

The superscript (2) denotes a partial derivative of joint MGF 

//z(a1,a2) with respect to the second argument a2.  The contour C 

in integral (108) need satisfy only the constraint (X, -wX) e 

ROA(//z) whereas contour integrals (106) and (107) have additional 

half-plane restrictions.  Additional details about the A(X) 

function for equation (108) are found in the appendix. 

If RVs z1 and z2 in equation (102) are quadratic and linear 

forms in arbitrary correlated Gaussian RVs, the required joint 

MGF //2(
ai/«2) is given in reference 1, equation (23), by setting 

M = 2.  In particular, let RV 

z2 - x' C x + v' x + u , (109) 

where square matrix C is positive definite.  Then, expressing 

z2 - (x + C"1 v/2)' C (x + C"1 v/2) + u - | vf C_1 v ,  (110) 

it can be seen that no matter what value random vector x takes 

on, random variable z2 must satisfy 
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z2 > u - I V C-1 v . (111) 

If the right-hand side of equation (111) is non-negative, then 

the results in equations (102) through (108) are directly 

applicable.  if RV X is unable to take on the vector value 

-C  v/2, then the non-negative restriction on the right-hand 

side of equation (111) can be eased.  The general case of 

arbitrary z2 values in ratio (102) is undertaken in the appendix. 
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SUMMARY 

A method for obtaining SPAs for some M-dimensional 

probabilistic problems of great practical interest has been 

derived and then applied to some representative examples.  The 

accuracy of the SPAs has been verified by using a combination of 

simulation, asymptotic forms, and Gauss-Hermite quadrature in M 

dimensions.  The SPA with a first-order correction term has been 

the model for these numerical results. 

The main relation utilized is given by 

r du p (u) g(u) = —±—rr r dX /# (X) Y(X) , (112) 
J    z (i2n)n J    z 

where joint PDF p (u) and joint MGF //_(X) are a Laplace transform z « 

pair, as are functions g(u) and Y(X).  M-dimensional relation 

(112) is exact; however, numerical evaluation of either side 

requires adoption of an approximation technique.  In particular, 

the approach adopted is to utilize SPAs with a correction term; 

this, in turn, requires that fourth-order partial derivatives be 

evaluated for the joint CGF X„(X) = In // (X). z z 

For overlapping positive functions p„(u) and g(u), there is 

only one SP on the real axes in the common ROA of the product 

fj  (X) Y(X) in the transform domain.  This has been the experience z 

in the numerical results here.  However, if p_(u) or g(u) are not z 

positive, the SPs can lie anywhere in the complex X planes. 

63 



All the g(u) = g(ulf...,uM) functions considered here were 

separable in their arguments (u1#...fuM), except for one 

two-dimensional case.  This separability enables the use of 

one-dimensional Laplace transform tables in order to obtain the 

corresponding Y(X) function.  If g(u) is not separable, 

determination of Y(X) can be extremely difficult and a definite 

impediment to progress. 

Considerable storage and execution time can be required for 

some of these M-dimensional problems.  For example, the 

determination of the first-order PDF of the maximum of a set of M 

dependent RVs requires that M M-dimensional integrals and SPs be 

evaluated.  Also, some combinatorial problems quickly encounter 

large increases in the number of alternatives that must be 

considered for an exact representation of the probability under 

investigation.  These limitations serve to restrict the use of 

the technique in practice. 
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APPENDIX — STATISTICS OF RATIO 

The statistics of ratio w = z.j/z2, 
as in equation (102), are 

of interest, where /^(c^,^) is the joint MGF of RV z = [ z^   z2]'. 

However, now, the denominator RV z- can be positive or negative. 

The first-order CDF of ratio w is 

c (w) = Pr(z. < w z2, z2 > 0) + Pr(z1 > w z2, z2 < 0) = 

= Pr(v < 0, z2 > 0) + Pr(v > 0, z2 < 0) = 

= 7TT-2 J dXl J dX2 "v. <Xl'X2,/(-XlX2> + (i2n) t, }, 2 
ul   ^r 

+ 777-2 J dXl J dX2 "vz < VX2>/("xiX2> •       (A-l) 
(x2n) * i, 2 

Lr   °1 

The RV v = z- - w z2, as in equation (104).  The required joint 

MGF in equation (A-l) is given by 

"vz   (xi'X2J = E exP[xi(zi ~ w z2)   + X2 z2\   = //z(Xl'X2~wXl) (A-2) 

in terms of the joint MGF /'»(«i/«;,) of RV z.  Of course, it is 

required that argument (X-,X2-wX.) e ROA(,u ).  Equation (A-2) can 

be substituted into equation (A-l) to get first-order CDF 

°w(W) = Titio2" J" dXl ^  ^ "«(Xl'X2-wXl)/(-XlX2) + 
C
l   Cr 

+ — j .J dXx J dX2 /t/z(X1,X2-wX1)/(-X1X2) .      (A-3) 

Cr   Cl 
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Thus, two two-dimensional integrals need to be evaluated in order 

to get CDF cw(w) of the ratio w = z1/z2; equation (A-3) is the 

main result of this appendix.  The A function of equation (48) is 

A(X1,X2) = Xz(X1,X2-wX1) - ln(-X1X2) (A-4) 

for (X.,X2-wX1) e ROA(/u ) 

If RV z2 is always positive, then joint PDF p (z.,,z2) = 0 for 

argument z2 < 0.  Then, joint MGF 

OS 00 

//z(Xl'X2) = J dzl exP(\z1)   J dz2 exp(X2z2) pz(z1,z2)   (A-5) 
-00 0 

tends to zero as Re(X2) -> -».  Then, by moving the two X- 

contours in equation (A-3) toward -», there follows, 

respectively, 

i r ,. yE(Xrx2-wXi» _ j dx2  r fJz(\1,   _wXl) (A-6) 
Cr 

and 

1  r    /'-.(^i f X_-wX1 ) 

m J dX2        -x'        - ° • (*--" 
ci 

Therefore, equation (A-3) reduces to 

//„(X1 , -wX, ) 
dXx 

C, 
V»> - I3i I dXi    -xt   . 

•1 

in agreement with equation (106) 

A-2 
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As an application of this approach by means of joint MGF 

functions, the first-order PDF of Student's ratio will be 

derived.  Let g and (g^,...,g  )  be independent, identically 

distributed Gaussian RVs of zero mean and unit variance (without 

loss of generality).  Also, let 

s = 

(2                        2~\ 
*1 + * ' ' + % 

h 

(A-9) I     n     J 

Student's ratio is 

W * f - V S zj •                                         (A-10) 
s    z 

RV z2 is obviously positive, thereby allowing use of equation 

(108). 1 he joint MGF o f RV z - [Z;L z2]' is 

//2(X1,X2)   =  Ez  exp(X1z1  +  X2z2)   =  Esg exp(xi  g s +  X2   s2)   = 

Es[exp(x2s
2)   exp(ix2s2)]   =   [i  -   (2X2+X2)/n] 

-hn 
(A-ll) 

for  Re(2X2  +  X1)   <  n.     A partial  derivative with  respect  to  X, 

yields 

"z     (W   -   i1  ~   (2X2+XlH 
-Jjn-1 

(A-12) 

Therefore, 

2v     .-Jsn-1 
fJz     (X,   -wX)   =   [l  +   [2wX-X2]/n] for  Re [x2-2wx]   <  n   .   (A-13) 
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At this point, make the change of variable X = w + iu, where 

u is real.  Then, equations (108) and (A-13) yield, for all w,u, 

P„(w) = jf^ J dX [l + (2wX-X2)/n]     = (A-14) 

C 

CD 

2^ J du [l + (w2 + u2)/n] 

 H T(Hin+1))
2       h{n+1)     for all w .     (A-15) 

(nuP r(äjn) [1 + w7n]l(n+1) 

The last integral on u was determined from reference 4, equation 

3.241 4.  Exact result (A-15) is Student's PDF for ratio w in 

equations (A-9) and (A-10). 

Alternatively, the SPA to equation (A-14) is obtained by 

observing that 

A(X)   = -(%n+l)   ln[l  +   (2wX-X2)/nl   , 

and 

dA(X)        (n+2)(X-w) ,A   ... 
"dX~" " ~~TTT2~  ' (A"16) 

n+2wX-X 

d!A(X)   =   (n+2)     n+w2
+(X-w)2        m (A_17) 

dX2 [n+w
2_(x-w)2l 

The real SP is obtained from equation (A-16) as X = w, for which 
*2     *     2 
X - 2wX = -w  < n, as required in equation (A-13).  Then, 

equation (A-17) yields A2 = (n+2)/(n+w
2) at the SP X = w, while 

equation (55) yields SPA 
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ao - (HTWI/1
1
 

+ w H £or a" w • (A-18) 

This SPA aQ has precisely the same variation with argument w as 

does exact result Pw(w) in equation (A-15); however, the ratio 

aQ/p (w) starts at (it/6p = 0.7236 for n = 1 and increases 

towards 1 as n increases.  The first-order corrected SPA a is 

aQ exp(0.75/(n+2)), which is 0.9291 of Pw(w) in equation (A-15) 

for n = 1. 

In general, the A(X) function of equation (108) is 

A(X) = In //2(X, -wX) , (A-19) 

where a subscript notation for PDs has been adopted.  But, since 

//(a,ß) = exp[x(a»ß)l» there follows 

//2(<x,ß) = yu(a,ß) X2(a,ß) =  yu(a,ß) <M«,ß) , (A-20) 

leading to 

A(X)   =   X(X,   -wX)   +   In   <f>(X,   -wX)   ■  X +   In   4>   • (A-21) 

Therefore, 

and 

A'(X)   =   Xx   - w  X2   +   («>!   - w   4>2)/<f> (A-22) 

A"(X)   =  xxl  -  2  w x12  + w2   X22  + 

+   (*n  "  2  w  *12  + w2   4>22)/<f>  -   (^  - w  4>2)2/<j>2   . (A-23) 
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Since <f> = 4>(X, -wX) = X2(^» -wX), the terms in equations (A-22) 

and (A-23) are explicitly 

'•'l = X12 '   *2 = "w X22 ' 

and 

♦ll " X211 '   *12 = _W X221 '   *22 = w2 X222 '       (A"24) 

This information is sufficient to locate the SP of A(X) in 

equation (A-19) and determine SPA aQ to equation (108). 
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